One-Way Analysis of Variance (ANOVA)
The basic scenario leading to an analysis of variance is one in which the goal is to explain the effect of one or more qualitative (categorical) variables upon a single quantitative variable. In these notes we assume a single qualitative independent variable, or a one-way analysis of variance.
Two equivalent models are commonly employed in one-way ANOVA: the cell means model, and the factor effects model. Although these notes primarily cover the cell means model, we will refer to the factor effects model where convenient and you are expected be able to move between model descriptions.

Cell Means Model:

The following is meant to explain the notation used in the cell means model:
· Factor: Another name for the single qualitative independent variable.
· Level: one of the k distinct values of the factor involved in the analysis. Also called a Treatment.
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, is the size of the sample drawn from the ith treatment population of the factor. 
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is the total sample size drawn from all treatments.

· 
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: The mean value of the quantitative dependent (response) variable under the ith treatment.

· 
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: The value of the response variable for the jth observation from the ith treatment in the sample.

·  
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. Note: The assumption made in ANOVA is that the errors are independent and identically distributed 
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For the jth observation on the ith treatment, the cell means model is given by   
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  . Since the treatment mean 
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. Finally, this leads to the conclusion that, under the assumptions made about the distribution of the errors, the 
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Factor Effects Model:
The following is meant to explain the notation used in the factor effects model:
· 
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: Under the most common interpretation, this is the unweighted average of all treatment means, i.e., 
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. (In some situations, 
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may be defined as a weighted average of the treatment means.)
· 
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: The effect of the ith treatment. If 
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For the jth observation on the ith treatment, the factor effects model is given by   
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  . Since the treatment mean 
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is a constant, we have 
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. Finally, this leads to the conclusion that, under the assumptions made about the distribution of the errors, the 
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Fitting a One-Way ANOVA Model

The Analysis of Variance is a linear model because it can be expressed in the form 
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, where the forms of the design matrix 
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 depend upon whether the cell means or factor effects models are being fitted. It can be shown that the least squares solution to the problem of fitting an ANOVA model to a sample is given by:
Cell Means Model: For the cell means model, under the least squares criterion, we seek to minimize the sum 
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. This can be rewritten 
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. The only way to minimize the overall sum is to minimize each of the component sums. You will show in a homework problem that a sum of the form 
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is minimized by letting 
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. Thus, the least squares estimates of the treatment means are the corresponding sample means, 
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. The following notation is used for the cell means model:
· 
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: The mean response for the sample drawn from the ith treatment population. So, 
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· 
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: The mean response for the total sample, 
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· 
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Factor Effects Model: For the factor effects model, under the least squares criterion, the estimates are the same as those obtained in fitting the cell means model, but the statistics being fitted differ slightly. In particular,
· 
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: the estimated effect of the ith treatment on the mean of the response variable, given by 
[image: image44.wmf]ii

ˆ

YY

a=-

.
Partitioning the Sums of Squares
In both the cell means and the factor effects model, we'll differentiate between the following deviations:
· 
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is the deviation of the jth observation from the ith treatment from the overall mean for the sample. (This corresponds to 
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in regression.)
· 
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is the deviation of the sample mean for the ith treatment from the overall mean for the sample. (This corresponds to 
[image: image48.wmf]i

ˆ

YY

-

 in regression.)
· 
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is the deviation of the jth observation from the ith treatment from the sample mean for the treatment. (This corresponds to 
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 in regression.)
The deviations above each lead to a sum of squares corresponding to a familiar sum of squares in regression.

· 
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 is the Total Sum of Squares in one-way ANOVA.
· 
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 is the "Between Treatments" Sum of Squares. (Note: traditionally, this sum of squares goes by other names, such as the treatment sum of squares, for example. However, since there is no generally accepted choice of name, I've decided to use the name it would have in regression.)
· 
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 is the Error Sum of Squares, just as in regression. It's also called the "Within Treatments" sum of squares because it measures error from the treatment  means.
If we accept for the moment that sums of squares for one-way ANOVA correspond exactly to their counterparts in regression, then it won't come as a surprise the sums of squares add similarly:  SST = SSR + SSE  . We can also partition the degrees of freedom as follows:

· 
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 , because we lose one of the n "bits" of information contained in the n observations when we must estimate the overall mean 
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 , because we must estimate k - 1 treatment means 
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. (Note: the estimates of 
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 can be obtained from the k estimates 
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Note: the degrees of freedom partition in the same way as do the corresponding sums of squares: 
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. Although we haven't proved it, this is a result of the geometry of the vector space of observations,
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. The vector of deviations "Between Treatments" and the vector of deviations "Within Treatments" lie in orthogonal subspace in 
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. Thus we obtain the same Pythagorean right triangle in 
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seen in regression, where the "Between" and "Within" vectors form the legs, and the vector of "Total" deviations forms the hypotenuse. Thus, the sums of squares relation SSR + SSE = SST is just a statement of the Pythagorean Theorem in 
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, where SSR and SSE are the squared lengths of the "Between" and "Within" vectors, respectively. Finally, the degrees of freedom relation 
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 is just a statement of the dimensionality of the subspaces where the vectors "live."
The table below summarizes the relationships between the sums of squares and their degrees of freedom for both a one-way analysis of variance with k treatments, and a multiple regression with k-1 independent variables. 
Question: why is the One-Way ANOVA with k levels equivalent to a multiple regression with only k-1 independent variables?
	One-Factor ANOVA with k levels
	Multiple Regression with k - 1 independent variables

	Sums of Squares
	df
	Sums of Squares
	df

	SSR "Between"
	k-1
	SSR
	k-1

	SSE "Within"
	n-k
	SSE
	n-k

	SST "Total"
	n-1
	SST
	n-1


Testing for a Differential Treatment Effect on the Response Variable
The hypothesis test for treatment effect has the following forms, both of which lead to the same ANOVA table:

Cell Means Model: 

· 
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. This is claim that all levels of the factor variable produce the same effect on the mean of the response variable.
· 
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At least two of the treatment means differ. 

Factor Effects Model:

· 
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. This is the same null hypothesis as the cell means model, but considering the differential treatment effects 
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 is not zero. Equivalently, at least two of the treatment means differ.

All Roads (Really Do) Lead to F: the F - Ratio in One-Way ANOVA
Chi-Square Random Variables and the F Distribution

If the errors in a one-way analysis of variance model are independent
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is the Chi-square distribution with k - 1 degree of freedom. Similarly, 
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Note: The degrees of freedom above agree with those resulting from a multiple regression model based on one qualitative variable with k levels. Remember, we would only create k - 1 dummy variables for the k distinct values of the factor. Thus the k - 1 degrees of freedom for SSR reflects the k - 1 "slopes" estimated in the model                 Y = X1 + X2 + … + k-1Xk-1 + 

Then the F - Ratio, 
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, that appears in the ANOVA table is the ratio of two independent chi-square distributions divided by their respective degrees of freedom. Under the model assumptions, the F - Ratio follows an F distribution with degrees of freedom
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 are the degrees of freedom of the chi-square variables in the numerator and denominator of the F - Ratio, respectively. 

The F - Ratio for One-Way Analysis of Variance (the ANOVA Table) 

The hypothesis for the test in one-way ANOVA takes the form 
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Some treatment means differ. As with all hypothesis tests, the test is conducted under the assumption that the null hypothesis,
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, the following are all true under the null hypothesis (Note: n is the total size of the sample):
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Under the null hypothesis, the following are also true:

· 
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So, under the null hypothesis of the test we expect the F - Ratio to be about 1. Clearly, an F - Ratio very different from one is evidence for the alternative hypothesis. The question is: is the test left-, right-, or two-tailed. The answer is: it's right-tailed. The reason is that under the alternative hypothesis,
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Notice that under
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the expected mean square for the model, E{MSR}, is greater than
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, so the F - Ratio is expected to be greater than 1. Hence, we reject
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, i.e., we conclude there is a differential treatment effect, for values of F significantly greater than 1. Although we could use a table of critical values of the F distribution with
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to conduct the test at a fixed significance level 
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, we'll rely on the P-value in the ANOVA table of computer output.

Notice that
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under the alternative hypothesis. So we are more likely to be able to reject the null hypothesis (and conclude a treatment effect exists) if either of the following are true:

· At least one of the 
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 is large, i.e., the larger the treatment effect is, the more likely it is that we'll detect it! 
· The 
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 are large. The larger the samples are, the more precisely we can estimate the treatment effects
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  (making it easier to detect differences between them).
Analysis of Factor Level Effects
Suppose that the errors appear to be independent
[image: image111.wmf](

)

2

0

N,

s

 based upon an analysis of the residuals, and that the P-value for the model leads us to conclude that some of the treatment means differ. The next step is to investigate the nature of the differences in treatment effects. From your introductory statistics course, you may be familiar with the t-test for the difference in two population means, 
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. Although this is not the test that is usually used in the analysis of variance, it is a good place to start a discussion about analyzing treatment effects in one-way ANOVA.
A t-Test for the Difference in the Means of Two Treatments

Suppose that our interest lay only in considering whether the mean value of the dependent variable is different for two different levels of the factor variable. If the assumption that the errors are iid 
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 appears reasonable, then we can construct confidence intervals, and conduct hypothesis tests, for the difference in the means, 
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Confidence intervals and hypothesis tests are most straightforward when they involve a single parameter estimated by a single random variable! (I wish I could get my Stat 50 students to realize this.) So we should think of the difference in the means, 
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 are the means of independent samples drawn from the two treatments. The following notation summarizes where we are at this point.
· 
[image: image120.wmf]1

n

 and 
[image: image121.wmf]2

n

 are the sizes of the samples drawn from treatment populations one and two, respectively.

· 
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, the variances for the dependent variable in each population, are assumed equal, i.e., 
[image: image124.wmf]222

12

s=s=s

, where 
[image: image125.wmf]2

s

is simply the variance of the error in the ANOVA model; remember, 
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 for all observations on the dependent variable for all treatments by assumption.
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are the sample means under the two treatments.
Now, any confidence interval for, or hypothesis test of, 
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will depend upon the distribution of the estimator 
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, because linear combinations of normal variables are also normal, and the variance of the difference of two independent random variables is the sum of their individual variances.
Although an ANOVA model assumes constant variance 
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· 
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are the usual sample variances for the two samples drawn.

Then, from well established theory, the statistic, just another name for a random variable computed from the data, 
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 has a t distribution with 
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Example: Five measurements of the carbon content (in ppm) of silicon wafers were recorded on successive days of production. Can we conclude that the carbon content has changed?

	Day 1
	2.01
	2.13
	2.20
	2.09
	2.07

	Day 2
	2.31
	2.41
	2.23
	2.19
	2.26


(The values in the table below were calculated on my calculator)

	Populations
	Sample Size
	Sample Mean
	Sample Variance
	Pooled Variance
	df
	Critical Value Used

	Day 1
	5
	2.10
	0.0050
	0.0061
	8
	
[image: image143.wmf]80025

2306

,.

t.

=



	Day 2
	5
	2.28
	0.0072
	
	
	


Note: Because the sample sizes were equal in this example, the pooled variance is just the average of the two sample variances. In general, however, the pooled variance is a weighted average of the sample variances, where greater weight is placed on the estimate derived from the larger sample. This should seem reasonable since larger samples tend to provide more accurate estimates, and therefore should carry more weight in the pooled estimate.
Then a 95% confidence interval for the difference in mean carbon content for the two days is given by 
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, or (0.066 ppm, 0.294 ppm). 
Similarly, we can conduct a two-tailed test of the equality of the mean carbon content for the two days, with hypotheses
· 
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The P-value for this test of 0.00665 (obtained from my calculator) suggests that the mean carbon content of the wafers for the two days differs, a conclusion we could have reached based on the confidence interval for the difference derived above.

Now, you're probably wondering why I've spent so much time on a test that rarely gets used in the analysis of variance. The first reason is that t-tests of the difference between the means of two populations are popular in statistics, and this is a class in second semester statistics. The second reason is more important to the analysis of variance: why, if they're so popular, don't we use t-tests in ANOVA to evaluate the differences in treatment means? This answer involves the idea of the family-wise error rate.
The Family-Wise Error Rate

Suppose that a factor has k levels and that we've concluded, based on the P-value in the ANOVA table, that some level means are unequal. We then set out to investigate the differences with the goal of (hopefully) ranking the treatment means. If we decide to conduct t-tests for every possibly pairing of treatments, we discover that there are 
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 ways to do this. The problem is not merely that this could involve conducting a large number of t-tests, but the much less obvious problem of the family-wise error rate for such a strategy. 
In the two-tailed t-tests being considered here, the significance level of the test, 
[image: image148.wmf]a

, is the probability of rejecting the statement 
[image: image149.wmf]treatment A=treatment B

mm

when the means for the two treatments are equal, i.e., the probability of committing a Type I error. To repeat myself, 
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. But we are conducting not one such test, but 
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such tests. The question is, what is the probability that at least one Type I error occurs for the family of 
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tests. This is called the family-wise error rate, and as we'll see, it can be much larger that 
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 tests were independent (they actually aren't because the same data is used in multiple tests), then it's easy to see that P(at least one Type I error) = 1 - P(no Type I errors) = 
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is the number of pairings. In fact, this forms an (approximate) lower bound on the family-wise rate, where an upper bound is given by 
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, the table below summarizes the family-wise error rates for a few choices of k.
	Number of Levels, k
	p
	Lower Bound on P(at least one Type I error)
	Upper Bound on P(at least one Type I error)

	3
	3
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	4
	6
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	5
	10
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	15
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Alternatives to All Possible Pairwise t-Tests
The problem of family-wise error rates has attracted the attention of some of the biggest names in statistics, who have developed procedures for constructing simultaneous confidence intervals that can also be used to conduct pairwise tests of treatment means. They can be accessed in StatGraphics in the Means Plot window by clicking the right mouse button and selecting Pane Options.
· Fisher's Least Significant Difference (LSD) intervals: Named after Sir R. A. Fisher, this is the method that StatGraphics defaults to (it appears in some of my solutions for no better reason than this).

· Tukey's Honest Significant Difference (HSD) intervals: Named for John Tukey, who worked for AT&T back when it had more money than God (and better service), this method was specifically designed to control the family-wise Type I error rate for all possible pairwise comparisons of treatment means at a fixed 
[image: image167.wmf]a

. In most cases, this is the set of intervals that are preferred.

· Scheffe Intervals: Named for Henry Scheffe, who, besides deriving his intervals, wrote a classic text on the analysis of variance. This procedure was about more than just confidence intervals. It was designed for the related problem about drawing inference on contrasts. We haven't discussed contrast yet, and we may not have time this semester, but Scheffe came up with a way to conduct tests of all possible contrasts at a fixed family-wise rate 
[image: image168.wmf]a

. Scheffe intervals, however, tend to be more conservative, i.e., wider, than HSD intervals.
· Bonferroni Intervals: One of the original attempts at solving the problem of family-wise error rates, Bonferroni intervals are still useful in certain situations. Generally, however, Tukey's HSD intervals are probably those most commonly employed to draw simultaneous inference in ANOVA at a fixed 
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